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Abstract

Structures of the magnetic field and velocity in stars are discussed based on the mean field MHD equations.
A special case is presented, where the solution is constructed by the Beltrami solution in the stellar convection zone
with the symmetry in the azimuthal direction. Magnetic field lines form concentric toroidal magnetic surfaces. The
cross-helicity dynamo mechanism induces a mean flow of plasmas. The structure of this driven flow is also shown
to constitute toroidal surfaces. Considering the symmetry and the relation of this toroidal magnetic structure with
the polarity, it is shown that the latitudinal component of this flow is pole-ward in the northern as well as southern
hemispheres. This gives an insight into the role of the magnetic field for the meridional flow.
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1. Introduction

The magnetic and flow structures in stars have attracted
attention. The magnetic structure and the flow structure in the
convection zone (e.g., the solar convection zone) have been
subject to intensive studies in relation to dynamo problems.
(See, e.g., reviews Moffat 1978; Krause, Raedler 1980; Priest
1982; Parker 1993; Lang 2001; Shibahashi 2002; Diamond,
et al. 2004; Yoshizawa et al. 2004.) The effect of the magnetic
field on the flow is reconsidered, as was recently summa-
rized (Shibahashi 2004), and requires further studies. Besides
the conventional turbulent dynamo mechanisms, like alpha-
and beta-dynamo (i.e., the turbulent helicity effect and turbu-
lent resistivity), a turbulent cross-helicity dynamo has been
predicted (Yoshizawa 1990; Blackman, Chou 1997). In this
mechanism, the electromotive force is driven in proportion to
the fluid vorticity. The counterpart of this process appears in
the equation of the fluid dynamics. That is, a turbulence force,
which is in proportion to the inhomogeneous mean magnetic
field, appears when the turbulent cross-helicity does not vanish.

This mechanism is applied to astrophysical plasmas. One
example is given in the problem of generating toroidal and
poloidal magnetic fields and a reversal of the magnetic field.
The other example considers the relationship between the
magnetic activity (as is revealed as sun spots and star spots)
and the perturbed oscillations. In addition to the Lorenz
force model (Yoshimura 1981), the cross-helicity dynamo

mechanism has been discussed (Itoh et al. 2005). Studies have
shown that the cross-helicity dynamo mechanism has impor-
tant influences on the evolution of the magnetic field and flow
in astrophysical objects.

This article reports on possible magneto-fluid structures of
the convection zone of stars in the presence of a strong cross-
helicity dynamo process (Yoshizawa et al. 2000; Blackman
2000). Possible stationary structures are discussed, but
dynamics are not treated. Based on the turbulent electromotive
force, a toroidal structure of the magnetic field is predicted
to exist. Then, the plasma flow driven by this magnetic field
through the cross-helicity dynamo mechanism is considered.
It is shown that the meridional flow can be induced by the
toroidal magnetic structures. When the magnetic field satisfies
the polarity rule (i.e., the symmetry property across the equato-
rial plane), the meridional flow driven by the cross-helicity
dynamo mechanism can direct pole-ward both in the northern
and southern hemispheres.

In section 2, basic equations to start with are shown, together
with the imposed boundary conditions. Assumptions are intro-
duced. Then, the formal solutions of the magnetic field and
the flow structures are obtained in a spherical geometry. In
section 3, the solutions are shown and the structures of the
magnetic field and flow velocity are illustrated. Implications
of the solution are discussed. In the final section, a summary
and discussions are given.
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2. Basic Equations

One way to explain the meridional flow is based on the
Eddington–Sweet mechanism (Sweet 1950), which is caused
by the temperature gradient of the latitudinal direction. (Such
a case is discussed in appendix 1.) In this article we consider
the role of coupling between the magnetic field and the flow.
In order to study this mechanism, we choose the limit, for
the transparency of the argument, where the baroclinicity
is ignored and the thermal wind balance holds. The basic
equations we start with are the mean-field MHD equations in
the following (Yoshizawa et al. 2003):
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Here, equation (1) is the global flow equation in the presence
of microscopic MHD turbulence, u is the relative velocity
in the rotation frame, p is the pressure per unit mass with
effects of microscopic pressure fluctuation included, B is the
magnetic field, J (= ∇× B) is the electric current, ν is the
molecular viscosity, and η is the magnetic diffusivity. These
equations are given in the Alfvén unit, where the magnetic
field is normalized to √

µ0ρ, and is measured in ms−1 (ρ is the
mass density). Quantities with prime (′) indicate the fluctuating
elements. Turbulent transport coefficients, which generate the
mean magnetic field, are defined as α = Cα〈−u′ ·∇× u′ +
B′ ·∇×B′〉τc and γ = Cγ 〈u′ ·B′〉τc, where τc is the correlation
time of the turbulence. The magnetic diffusion coefficient, β,
is also expressed in terms of the spectrum of the velocity and
the magnetic field fluctuations. In the dynamics of the flow, the
turbulent viscosity, νT, and the drive by the inhomogeneity of
magnetic field, the coefficient for which is given by νM, appear.
Introducing the property of the 3D MHD turbulence, β can
be expressed in terms of the kinematic magnetic diffusivity,
β = Cβ〈u′2〉τc (Diamond et al. 2004; Vainshtein, Kitchatinov
1983). Some details concerning the dynamo coefficient, which
are used here, are given in Yoshizawa et al. (2004), and a brief
derivation is given in appendix 2. Noting that β and νT are
induced by the fluctuation energy intensity, while γ and νM

are caused by the cross-helicity of the MHD perturbations, an
evaluation has been given,
νM

νT
) γ

β
(5)

[see: Yoshizawa et al. (2004). Note that other modeling
may provide a relation with a different magnitude of the
ratio Cr, e.g., νM/νT ) Cr γ /β. Nevertheless, the differ-
ence in the ratio Cr does not cause a qualitative change in
the conclusion of this analysis.] Equation (3) illustrates the
conventional α-dynamo (helicity dynamo), β-dynamo (turbu-
lent resistivity), and the cross-helicity dynamo. Note that the
symbol γ indicates the cross-helicity dynamo in this article,
and does not denote the anti-symmetric part of α, which
is used in, e.g., Moffat (1978). The gradient of the mass-
weighted pressure appears in equation (1) as a total derivative,
∇p. The mean-field dynamical equations have been studied
in rotating system (e.g., Rüdiger, Kitchatinov 1990), and this
model of the mean-field equations is consistent with the line of
thought in (Rüdiger, Kitchatinov 1990). We note here simpli-
fications of equations (3) and (4), where dynamo coefficients
(α, γ , . . . ) are modeled as scalar (or pseudo-scalar) quanti-
ties. In principle, they are tensors, and the approximation
to employ scalar (pseudo-scalar) coefficients has a limitation
(e.g., Rüdiger, Hollerbach 2005). Nevertheless, such a simpli-
fied model has also been proved to be relevant for under-
standing the qualitative feature of the structure formation in
strong MHD turbulence, as demonstrated by Taylor and other
researchers (Taylor 1986). In the first step to understand the
magnetofluid structure, driven by the cross-helicity dynamo
mechanism, we choose this simplified, but fruitful, model.

In order to obtain a possible solution with a global struc-
ture, we consider the case where the turbulent viscosity is large
enough compared with the molecular viscosity, and the resis-
tive diffusion of the magnetic field is neglected. For trans-
parency of the argument, the stationary solution, ∂B/∂t = 0, for
the case of constant dynamo coefficients of (α, β, γ ) is consid-
ered. Under this circumstance, substitution of equation (3) into
equation (2) gives
∂B
∂t

= ∇× [u×B + αB−βJ + γ (ω + 2ωF)]. (6)

We are interested in a special case of u‖B, and search for the
solution employing the approximation of dropping u×B. The
velocity fields are separated into two categories. The former
is the flow velocity, u0, which exists without induction by the
magnetic field. The other is the response of the flow velocity, u,
owing to the appearance of the dynamo magnetic field. In this
article we are interested in and study the latter flow. The quasi-
stationary sate of B may occur through the condition

J =
1
β

[αB + γ (ω + 2ωF)]. (7)

We substitute equation (7) into equation (1). We take the
curl of the resulting equation, and have the equation of the
velocity that is driven by the magnetic field, with the help of
equation (5), as
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)]

. (8)
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The source of the torque νT∇2(γ /β) B in equation (8) is the
counterpart of the γ -related term in the right-hand side (RHS)
of equation (6). (Note that other type of solutions, in which
u ⊥ B-components, are also able to exist. We focus here
on special solutions of u ‖ B. The structure obtained here
shows analytic insight into the problem discussed later in this
article.) It has been well known that the turbulent transport
coefficient, α, is quenched, compared with an evaluation based
on a kinematic evaluation, by the generated mean magnetic
field (Diamond et al. 2004). It is possible that the turbulent
viscosity, νT, is also quenched by the generated mean magnetic
field. In this article, we assume that the quenching rate of νT
(for given generated mean magnetic field) is not stronger than
the quenching of α.

Under these assumptions and conditions, solutions that
satisfy

αB−βJ + γ (ω + 2ωF) = 0 (9)

and

u =
γ

β
B (10)

are searched. [In deducing equation (9) from equation (6) for
stationary and axisymmetric solutions, the right hand side of
equation (9) has a freedom of the gauge field, ∇φ, φ being
such as the electrostatic potential. The effect of the electrostatic
potential in the stellar plasmas could be important, but is out of
the scope of this article. Thus, we employ equation (9).] From
equations (9), (10), and the relation, J = ∇×B, we have

∇×B− α

λuβ
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2γ
λuβ

ωF, (11)

where
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β
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]
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The homogeneous solution of equations (11) and (12) leads
to the Beltrami solution of (B, J, u, ω),
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 . (13)

Inhomogeneous solutions are obtained accordingly, and the
solution of our interest is shown after introducing spherical
coordinates.

In order to obtain typical structures, we introduce spherical
coordinates (r, θ, ζ ), where θ = 0 corresponds to the rotation
axis, and the coordinates are shown in figure 1. The symmetry
is imposed on the ζ -direction (toroidal direction, or longitu-
dinal direction) ∂/∂ζ = 0.

In the beginning, we seek homogeneous solutions. Taking
the rotation of equation (11), we readily obtain

∇2B +
(
α

λuβ

)2

B = 0. (14)

The toroidal (longitudinal) component of the magnetic
field, Bζ , satisfies

Fig. 1. Spherical coordinates (r,θ,ζ ).
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General solutions for Bζ and Bθ are formally written in terms
of the n-th order spherical Bessel functions (jn and nn) and the
associated Legendre function of P (m)

n as

Bζ (r,θ ) =
∑

n

[anjn(y) + bnnn(y)]P (1)
n (cosθ ), (16)
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where

y =
α

λuβ
r. (19)

The flow velocities, (ur , uθ , uζ ), are also given by using
equation (10) and equations (16)–(19). Thorough description
of the representation in terms of spherical harmonics has been
discussed in, e.g., Yoshimura 1972.)

An inhomogeneous solution of B, namely, the toroidal field
Bζ0 ζ̂ , comes from rigid rotation, and is given in the form of
a toroidal (longitudinal) magnetic field by Yoshizawa et al.
(2000). Taking into account the screening effect, λu, here, a
form is given as

Bζ0 =
2γ
λuβ

ωF r sinθ, (20)
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and uζ0 is also obtained as
uζ0 = (γ /β)Bζ0. (21)

The total fields are given as Btot = B + Bζ0 ζ̂ and utot = u + uζ0 ζ̂ ,
respectively.

3. Possible Solutions for Toroidal Structure

Let us analyze possible magnetic and associated flow struc-
tures based on the solutions in section 2. Here, plausible
boundary conditions as well as the constraints are given, and
the solutions are illustrated.

3.1. Magnetic Torus

3.1.1. Toroidal structure
We here choose the lower order structure of poloidal

harmonics n (n ≥ 1), which is even from the up-down sym-
metry. (That is, the form of toroidal structure is symmetric with
respect to the equatorial plane. The up-down symmetry of the
sign of the magnetic field is discussed later.) The boundary
condition in radius is given at the lower and upper boundaries,
r = rin and r = rout. On these surfaces, the radial magnetic field
vanishes. (Note that this condition is chosen for the case that
the Taylor number is not very high. In the limit of the large
Taylor number, structures are expected to become homoge-
neous in the z-direction. If this is the case, the boundary condi-
tion is given in terms of the cylindrical radius, rc, in figure 1.
The solution, which is regular at the center, r = 0, is discussed
in appendix 3.)

In terms of the variable y of equation (19), the boundary
conditions are given at yin =α/(λuβ)rin and yout =α/(λuβ)rout.
The condition Bζ (r,θ ) = 0 at r = rin and r = rout yields

jn(yin)nn(yout)− jn(yout)nn(yin) = 0 (22)

and
yout

yin
=

rout

rin
. (23)

These eigenvalue equations (22) and (23) provide a series of
solutions, even if the poloidal mode number, n, is chosen.
(For instance, yout = 3.46π , 6.73π , 10.04π , . . . , for n = 2
and rin/rout = 0.7.) The eigenvalue is chosen here as the
minimum eigenvalue which satisfies equations (22) and (23).
The plausibility argument for this is given later in conjunc-
tion with quenching of the dynamo coefficients (Diamond et al.
2004). [This is also related to the consideration of minimum
principle. Under the circumstance of the fully developed MHD
turbulence, the final state is conjectured as the minimum energy
state for a given helicity: Taylor state (Taylor 1986). If this is
so, the radial node numbers tend to decrease. At this moment,
it is not clear whether the final state is completely free from
other constraints. For instance, if the Taylor number is high,
then the constraints of the Taylor–Proudman theorem may
prohibit access to the Taylor state. Thus, we do not require
the minimum principle of magnetic energy for given magnetic
helicity, but accept the smallest eigenvalue from equations (22)
and (23).] Once the eigenvalue (yin, yout) is obtained, the
magnetic field solution is given putting bn =−jn(yin)n−1

n (yin)an

into equations (16)–(18) as
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Now the coefficient an represents the magnitude of the
magnetic field of the homogeneous solution.

The resulting equations (24)–(26) show that the magnetic
field lines constitute concentric toroidal surfaces. The radial
and poloidal magnetic field is expressed as

(
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Bθ

)
=





1
r2 sinθ

∂

∂θ
ψ

− 1
r sinθ

∂
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ψ



 , (27)

where ψ = r sinθBζ,hλuβ/α and Bζ,h is the longitudinal compo-
nent of the homogeneous solution of the magnetic field. The
radial and poloidal components of magnetic surface satisfy the
relation

(Br,Bθ ) ·∇⊥ψ = 0, (28)

where ∇⊥ represents the derivative in the radial and poloidal
directions. Thus, ψ is the stream function (flux function) of the
magnetic field. The contour of ψ represents the cross-section
of the toroidal magnetic surface. The cross-sections of the
toroidal magnetic surfaces are shown in figure 2. The lowest
order number, n = 2, represents the solution shown in figure 2
(left), in which the toroidal structure extends from the equator
to the pole, and the one magnetic axis exists in both of the
northern and southern hemispheres, respectively. The solution
of n = 4 stands for the case where the pairs of tori are sustained
in both the northern and southern hemispheres (figure 2 right).
Two magnetic axes appear in both hemispheres. In this case,
the eigenvalue yout is given as yout = 3.73π , 6.88π , 10.14π , . . . ,
for rin/rout = 0.7.
3.1.2. Magnetic field structure

We here discuss the polarity of the magnetic field. Noting
the fact that the turbulent resistivity, β, is a scalar quantity,
but the turbulent helicity, α, and the turbulent cross-helicity, γ ,
are pseudo-scalar, the ratios α/β and γ /β change their signs
under the mirror transformation. Thus, we take that α/β and
γ /β have the property of anti-symmetry across the equatorial
plane. Equation (24) shows that Bζ changes sign between the
upper and lower hemispheres. (So is the radial component
of the magnetic field.) The poloidal magnetic field (magnetic
field component in the longitudinal direction) has the same sign
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Fig. 2. Cross-sections of the toroidal magnetic structure in the convective zone. The case of n = 2 (left) and n = 4 (right).

across the equatorial plane. Figure 3 illustrates the polarity
of the magnetic field on the magnetic surface. In the case
of figure 3, the rotational transform of the magnetic field is
chosen to be right-handed in the northern hemisphere. Then,
it is left-handed in the southern hemisphere. The sign of the
toroidal magnetic field is opposite, but the sign of the latitu-
dinal magnetic field is common.

The projection of the poloidal (latitudinal) and toroidal
(longitudinal) magnetic fields on the surface is illustrated in
figure 4 left. This indicates that the magnetic field in the higher-
latitudinal region is attributed to the second torus which has an
opposite helicity in comparison with the fundamental torus in
the lower latitudinal region. For instance, the toroidal magnetic
field in the lower-latitudinal region of the upper hemisphere is
right-handed for the case of figure 3. [The helix of magnetic
field line is right-handed, i.e., Bζ is in the same direction as
∇× (Br r̂ + Bθ θ̂).] The toroidal magnetic structure in the
higher-latitudinal region is left-handed.

A pair of toroidal magnetic structure can be embedded in a
hemisphere, as is illustrated in figure 2 (right). The change
of helicity (i.e., right-handed in the lower-latitude torus and
left-handed for the higher-latitude torus) occurs when the sign
of the coefficient α is different. That is, α is positive in the
lower latitudinal region and is negative in the higher latitudinal
region. The difference in the sign of α is plausible owing to the
geometrical consideration. The temperature gradient is perpen-
dicular to the rotation axis in the lower latitudinal region, and is
parallel to the rotation axis in the higher latitudinal region. This
leads to a difference in the turbulent convection, as is discussed
in Busse (1994). The dependence of the coefficient α on the
poloidal angle has also been discussed in the literature, e.g.,

Fig. 3. Schematic view of toroidal flux surfaces: one in the northern
hemisphere and the other in the southern hemisphere.

Rüdiger, Brandenburg (1995), Covas et al. (2001). Figure 4
(right) indicates the pair of torus and direction of magnetic field
in the upper hemisphere corresponding to the case of figure 3.
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Fig. 4. Observed magnetic field direction on the surface of northern hemisphere is shown by dotted lines in the left panel. A pair of tori with opposite
helicity in the northern hemisphere (right).

Fig. 5. Schematic drawing of the toroidal magnetic field. (a) and (b) illustrates the two phases of opposite sign of the magnetic field.

The magnetic field in the southern hemisphere has a parity
relation compared with the northern hemisphere. The right
(left)-handed torus is transformed into the left (right)-handed
torus, respectively, as is shown in figure 5 (left).

Before closing this subsection, we note the possible
quenching effect of dynamo coefficients owing to the induced
magnetic field. The magnitude of the magnetic field is simulta-
neously determined from the global structure. Let us consider
the case that the large values are given for ratios α/β and γ /β
in the kinematic theory of dynamo. That is, from equation (22),
a large number of radial nodes are allowed in between rin and
rout for these values. As the generated magnetic field increases,
the dynamo coefficient, α, is known to be quenched,

α =
α0

1 + RMB2V −2 , (29)

where α0 is the estimate in the kinematic model, RM is the
magnetic Reynolds number, and V 2 is a characteristic mean
square velocity (Diamond et al. 2004). The reduction of α
indicates that the eigenvalue (yin,yout) takes the minimum value
when the growth of the magnetic field is saturated. The eigen-
value (yin,yout) determines the magnitude of the magnetic field.

The coefficient β is quenched more slowly than α (Diamond
et al. 2004; Gurzinov, Diamond 1994). Therefore, the ratio
of the mean dynamo coefficients α/β becomes smaller when
the magnitude of the mean magnetic field increases. As shown
in equations (16)–(18), the scale length in the real space is in
proportion to β/α; the reduction of α/β means that the scale of
the generated mean field becomes larger as the magnetic field
becomes stronger. Accepting this consideration, we conclude
that the radial scale of the toroidal structure becomes larger as
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Fig. 6. Schematic drawing of the toroidal magnetic and flow structures. The black arrow indicates the magnetic field and the red arrows indicate the
flow velocity. The case of the sign of the magnetic field in the case of figure 3 is shown in (left). Right panel shows the case when the sign of the magnetic
field is reversed, owing to the solar magnetic cycle. In both cases, the poloidal flow which is driven by the cross-helicity dynamo is pole-ward.

the magnetic field becomes stronger. Therefore, the require-
ment, that the minimum of yin is selected from equations (22)
and (23), determines the magnitude of the magnetic field.

It is not yet concluded whether the coefficients νT and γ are
quenched more slowly than α. The possibility of the quenching
of νT is investigated, suggesting a slower quench than α. This
issue will be discussed in a separate article (P. H. Diamond
et al. 2006, in preparation).

3.2. Induced Flow with Toroidal Structure

Equation (10), u = (γ /β) B, shows that the induced flow,
which is driven by the cross-helicity dynamo effect, has the
same pattern as the toroidal magnetic field. The stream
function of the flow constitutes the concentric toroidal surfaces.

The flow velocity, which is induced by the cross-helicity
dynamo effect, is parallel to the magnetic field line. However,
the direction of the flow is different from the magnetic field,
as is illustrated in figure 5. The symmetry property of the
magnetic field reflects the symmetry of the flow pattern. First,
the relation of a pair of torus in the northern hemisphere is
considered. In the main torus (lower-latitude torus), γ is
chosen to be positive. In the second torus, the sign of α is
reversed. In addition, the direction of the magnetic field is
reversed, compared to the main torus. Therefore the coefficient
γ recovers the positive sign. Thus, the coefficient γ remains
positive in the northern hemisphere. This leads to the conclu-
sion that the flow that is driven by the cross-helicity dynamo
has the same direction as the magnetic field in the northern
hemisphere when the magnetic field takes the sign of figure 5
(left). That is, the poloidal flow (latitudinal flow) velocity
is towards the pole, but the toroidal flow (longitudinal flow)

velocity changes sign between the lower-latitude and higher-
latitude regions. The cross-helicity dynamo process drives a
toroidal flow. Therefore, the meridional flow closes itself on a
torus. The poloidal flow is connected to the radial flow. The
other property of the flow is that the direction of the radial flow
changes near the latitude where the toroidal flow changes its
sign.

Next, the flow velocity in the southern hemisphere is consid-
ered. According to the parity consideration, the coefficient γ
has an opposite sign in the southern hemisphere. The flow
velocity is indicated in figure 6 (left). The toroidal flow is
symmetric across the equatorial plane, but the latitudinal flow
is anti-symmetric. That is, the poloidal flow (latitudinal flow)
directs to the north pole in the northern hemisphere, and to the
south pole in the southern hemisphere. The meridional flows
are pole-ward in both hemispheres. This solution naturally
reveals the meridional flow. The direction of the magnetic field
changes associated with the magnetic cycle.

The case where the sign of the magnetic field changes is
illustrated in figure 6 (right). Owing to the change of the sign
of the cross-helicity, the direction of the induced flow with
respect to the magnetic field is reversed. As a result of this
change, the flow velocity keeps the same direction. In both
phases of positive and negative magnetic fields, the latitudinal
component of the induced flow is pole-wards in the northern
and southern hemispheres.

It is interesting to note that the plasma current, J, and the
flow vorticity, ω, are also parallel to the magnetic field, and the
proportionality coefficients between them are λJ =α/(βλu) and
λω = (γ /β)λJ , respectively:
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u =
γ

β
B, (30)

J = λJ B, λJ = α/(β λu), (31)

ω = λωB, λω = (γ /β)λJ . (32)

All structures of B, J, u, ω are simultaneously determined from
this particular mechanism. Also, the strengths are determined
by the balance between α, β, and γ .

4. Summary and Discussion

In this article, the toroidal structure of the stellar magnetic
field is discussed in the case that a cross-helicity dynamo
process is present. The mean field dynamo equations are
solved in the convection zone. A special case is presented,
where the solution is constructed by the Beltrami solution in
spherical coordinates with the symmetry in the longitudinal
direction. Magnetic field lines are shown to form toroidal
magnetic surfaces. Multiple toroidal magnetic surfaces, which
are concentric, constitute a torus. A solution with two
magnetic axes in the northern hemisphere (and in the solution
hemisphere as well) is presented. The cross-helicity dynamo
mechanism induces a mean flow of plasmas. The structure
of this driven flow is also analyzed. The flow is parallel
to the magnetic field line, and constitutes toroidal surfaces.
Considering the parity with respect to the equatorial plane,
it is shown that the latitudinal component of the flow, which
is driven by the cross-helicity dynamo, is pole-ward in the
northern as well as southern hemispheres. This gives one
possible explanation for the meridional flow in stars. The
toroidal flow (longitudinal flow), which is driven by the cross-
helicity dynamo, changes its sign between the lower latitu-
dinal region and the higher-latitudinal region. The sign of
the torsional oscillation differs between the lower and higher
latitudinal regions. This difference may be attributed to the
dependence of toroidal flow velocity on the latitude. The other
property of the predicted flow is that the direction of the radial
flow changes near the latitude where the toroidal flow changes
its sign. This might be examined in the near future.

The coupling between the magnetic field and flow is
discussed. In the vorticity equation, the rate of the vorticity
change has a term like ∇ × νT∇2(u − γB/β). One way
to reduce this term is to quench the coefficient, νT, by the
mean magnetic field. This is the Ω-quenching mechanism
(Kitchatinov et al. 1994). In this article, an elimination of the
difference u− γB/β is considered in the context of the cross-
helicity dynamo mechanisms. Therefore, these two mecha-
nisms are not mutually exclusive.

This way of thinking provides additional insights into solar
physics. This result concerning the sign of the rotational
transform may be related to the polarity rule of sunspots.
Observations of sunspots have shown that: (i) the sign of
the (toroidal) magnetic field is opposite between the northern
and southern hemispheres. (ii) In addition, the latitudinal
location of a pair of sunspots shows an inclination with respect
to the latitude. That is, an eastern sunspot is at the lower
latitude (i.e., closer to the equatorial plane) compared to a
western sunspot. (iii) This property also holds for the southern

hemisphere. (iv) When a magnetic flux tube deviates from
the toroidal magnetic surface (owing to certain instabilities,
which are not specified here), the flux tube retains the memory
of the rotational transform of the magnetic surface. Thus,
the magnetic rotational transform naturally induces a latitu-
dinal inclination of a pair of sunspots that appear on the solar
surface. If the magnetic field changes its sign in figure 3, the
geometry of inclination does not change. This gives an alterna-
tive approach to understanding the inclination of the sunspot,
for which, e.g., a mechanism based on the twist by the Coriolis
force has been proposed (Fan, Gong 2000). In addition, the
toroidal magnetic structure occupies a large portion of the
plasma, and the toroidal surfaces are in equilibrium under the
gravity. (If only a thin tube is magnetized, this tube may be
subject to a buoyancy motion, and is carried to the surface
when the dynamo effect is weak.) As shown in section 3, the
cross-helicity dynamo effect is weak on the equator, so long as
the coefficient γ is anti-symmetric between the northern and
southern hemispheres. The subject of this article is to consider
the effects of a cross-helicity dynamo, and special solutions of
u ‖ B are analyzed. The result of this analysis has a limitation
for phenomena on the equator. Within the model of this article,
the toroidal magnetic field, Bζ , at the surface is given by that
driven by the cross-helicity dynamo. Thus, on the equator of
the surface, the toroidal magnetic field vanishes. The analysis
in this manuscript is based on a simple model that the coeffi-
cients (α, β, γ ) do not depend on the radial position. Although
this is a simplified model, it has been successfully used to study
a reverse-field pinch plasma (i.e., the ‘Bessel-function model’
by Taylor 1986). When the inhomogeneity of the coefficients
(α, β, γ ) near to the surface is taken into account, the modified
Bessel function model has been used. The field near surface
is then modified, while the global structure is qualitatively
unaltered, and can be observable near to the surface. In order
to precisely explain the observation near the surface, inhomo-
geneity of coefficients (α, β, γ ) must be taken into account.
In addition, the radial transport of flow, which is driven by the
cross-helicity dynamo in the convection zone, to the surface
occurs. A small amount of transported angular momentum can
induce flow on the surface where the mass density is very low.

The stability of the established toroidal magnetic field struc-
ture is an important issue for future studies. For instance, a
small resistivity can lead to a deviation of the magnetic field
from the Beltrami solution. The deviation can cause insta-
bilities, which then tend to restore the Taylor state (Taylor
1986). The occurrence of a small-scale symmetry-breaking
perturbation at the edge of the torus has been observed on
laboratory plasmas, a characteristic example of which was
known as edge localized modes (ELMs) (Itoh et al. 1998).
Future study of such MHD instabilities of the possible toroidal
magnetic structure will enrich our understanding of the origin
of starspots. There are other solutions of higher order n-th
poloidal eigenmode structures. Higher n-components are
included in the solution if the realistic boundary condition is
fulfilled. However, in this paper we focus on indicating a proto-
typical solution that can explain the flows towards the Arctic
and Antarctic poles from the equator. More realistic solutions
with precise boundary conditions are left for future work.

In brief, the essence of the argument presented here is
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that turbulence cross-helicity (〈ṽ · B̃〉 which appears in γ )
and the mean potential vorticity (ω + 2ωF) may conspire to
produce large-scale magneto-fluid Beltrami structures (i.e.,
field-aligned flows) in stellar convection zones. While such
structures are of possible relevance to the Sun — as we discuss
— they are of much greater potential interest in the context
of young, rapidly rotating stars (YRRS), which have rotation
periods of (at most) 1–2 days. YRRS exhibit several features
that appear to be consistent with the sense of the discussion
presented above. Convective YRRS exhibit both fast rotation
and heightened magnetic activity, the latter increasing with
rotation rate (Donati et al. 2003). YRRS exhibit ‘star spot’
photospheric filling factors, f , as high as 30–50%, in dramatic
contrast to the case of the Sun (f < 1%) (O’Neal et al. 1998).
YRRS also seem to be slightly larger than expected, according
to standard stellar structure theory, and to exhibit concomi-
tantly higher photospheric temperatures (Barnes et al. 2004).
Thus, the internal magnetic field of YRRS may be strong
enough to directly impact the spatiotemporal structure of their
convective heat-transport process. In addition, star spots are
of general utility as photospheric flow ‘marker particles’, and
the large spot filling factor should facilitate improved spatial
resolution. It may thus be possible to map photospheric merid-
ional flows in YRRS in the near future. Existing observations
indicate that spots migrate toward the polar regions, again in
contrast to the Sun. In summary, then, YRRS combine a large
potential vorticity, convective turbulence, enhanced magnetic
activity, and a non-trivial meridional flow structure, all of
which are linked by the theory presented in this paper. It
thus seems to be quite reasonable to speculate that such YRRS
are prime candidates for manifesting the global magneto-fluid
structures discussed in this paper. We will explore this specu-
lation in future research.
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Appendix 1. Hydrodynamic Picture for Meridional Flows

The cause of meridional flow has been considered within
the framework of hydrodynamics to be that the rotation
frequency, ωF, depends on (r, θ ), ωF(r, θ ), not ωF(rc). [Here
rc refers to the cylindrical radius, and (rc, ζ, z) constitute
the cylindrical coordinates, see figure 1.] Alternatively put,
∂ωF/∂z -= 0, so that the Sun is not in a Taylor–Proudman
state. As a result, the equilibrium condition from equation (8)
is rewritten (neglecting cross-helicity dynamo effects) as

∂ω

∂t
= ∇×

(
−∇P

ρ
+ 2u×ωF + νT∇2u

)
, (A1)

where ρ is the mass density, and P the total pressure.
Further simplification is used as
∇ρ
ρ

= −∇δT
T

, (A2)

where δT denotes the temperature variation away from
adiabatic relation. (In case of perfect adiabatic stratification,
∇ρ ×∇P = 0 and ∇ρ ×∇T = 0 hold.) When the hydrostatic
balance in the radial direction, i.e., ∇P = ρ g, is satisfied (g is
the gravitational acceleration, g = g r̂), the equation

− g

r T

∂δT

∂θ
+ rc

∂ω2
F

∂z
− ∂

∂r
(νT∇2uθ ) = 0 (A3)

gives the balance relation for the poloidal flow.
Note that the relation

g

r T

∂δT

∂θ
= rc

∂ω2
F

∂z
(A4)

has been known as the thermal wind balance. According to
hydrodynamics, poloidal flow (meridional flow) is induced if
the thermal wind balance is violated. In the Sun, the rotation
frequency is observed such that Ω is larger at the equator than
at high latitudes. Thus,

∂ω2
F

∂z
< 0 (A5)

holds. The first term, ∂δT /∂θ , acts in the opposite direction if
g

r T

∂δT

∂θ
< 0, (A6)

i.e., the pole must be warmer and the equator cooler (Sweet
1950; Shibahashi 2004).

The discussion in the main text corresponds to the case of
perfect adiabatic stratification, and the flow is driven by the
cross-helicity dynamo process.

Appendix 2. Cross-Helicity Dynamo

The Reynolds stress, Rij , and the turbulent electromotive
force, EM, are defined by

Rij ≡ 〈u′
i u

′
j −B ′

i B
′
j 〉, and EM ≡ 〈u′ ×B′〉, (A7)

where the prime denotes the fluctuating part. Elsasser’s
variables, φ = u + B, ψ = u−B, are also divided into the mean
and fluctuating parts as

φ = Φ + φ′, ψ = Ψ + ψ ′, (A8)

by which we define the turbulent Elsasser’s stress as

R(E)
ij = 〈φ′i ψ ′

j 〉. (A9)

The turbulent electromotive force, EM, and the Reynolds
stress, Rij , are rewritten in terms of R(E)

ij as

EMi = −1
2
εij l R

(E)
j l , (A10)

Rij =
1
2
(
R(E)

ij + R(E)
j i

)
. (A11)

The perturbations φ′ and ψ ′ have been solved by using the
two-scale direct interaction approximation (TSDIA) method
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(Yoshizawa et al. 2003). The derivation is briefly illustrated
here. Separation between the microscopic scale (for fluctua-
tions, denoted by k and τ ) and macroscopic scale (for mean
variables, denoted X in this appendix) is assumed, and the ratio
between them is characterized by a smallness parameter, δS.
The Fourier component of φ′ is given by the sum of the
solenoidal part, φ + , and gradient term as

φ′(k;τ ) = φ + (k;τ ) + δS

[
−i

k
k2
∂∗φ′i (k;τ )
∂X∗

i

]
, (A12)

where φ + obeys the solenoidal condition concerning k:
k ·φ + (k;τ ) = 0. We expand φ′ and φ + in terms of δS as

φ′(k;τ ) =
∞∑

n=0

δnS φ′
n(k;τ ), φ + (k;τ ) =

∞∑

n=0

δnS φ +
n (k;τ ). (A13)

Similar relations are introduced for ψ ′.
In order to solve the dynamical equations for the fluctua-

tions by an iterative method, we expand them in terms of the
imposed mean fields, B and ω, as

φ′
0(k;τ ) =

∞∑

m=0

φ′
0m(k;τ ), (A14)

with a similar expression for ψ ′
0.

One first solves the O(1) terms in the δS-expansion. The
leading term in the expansion (A14) obeys

∂φ′
00i

(k;τ )
∂τ

+ ν k2 φ′
00i(k;τ )

− iZijl(k)
∫∫

ψ ′
00j (p;τ ) φ′

00l(q;τ ) δ(k− p − q) dpdq = 0,

(A15)

where Zijl(k) = kjDil(k) is given by using the solenoidal
operator, defined by Dij (k) = δij − ki kj k−2. We introduce the
Green’s function for equation (A15) as

∂G′
φij

(k;τ,τ ′)
∂τ

+ ν k2 G′
φij

(k;τ,τ ′)

− iZilm(k)
∫∫

ψ ′
00l(p;τ ) G′

φmj
(q;τ,τ ′) δ(k− p − q) dpdq

= δijδ(τ − τ ′). (A16)

With the aid of G′
φij

, we have the first-order terms in the expan-
sion equation (A16) as

φ′01i(k;τ ) = −i(k ·B)
∫ τ

−∞
G′
φij

(k;τ,τ1) φ′
00j (k;τ1) dτ1. (A17)

The higher order terms, φ′
0n(n ≥ 2), are expressed in terms of

φ′
0m(m ≤ n− 1) and ψ ′

0m(m ≤ n− 1), resulting in a nonlinear
dependence on B.

The terms on the order of O(δS) have also been obtained as

φ +
1 i(k;τ ) = − ∂Φl

∂Xj
Dlm(k)

∫ τ

−∞
G′
φim

(k;τ,τ1)ψ ′
0j (k;τ1) dτ1

−
∫ τ

−∞
G′
φij

(k;τ,τ1)
D∗φ′

00j (k;τ1)
DT ∗ dτ1

+ Bj

∫ τ

−∞
G′
φil

(k;τ,τ1)
∂∗φ′

00l(k;τ1)
∂X∗

j

dτ1

− i(k ·B)
∫ τ

−∞
G′
φij

(k;τ,τ1)φ +
1
′
j (k;τ1) dτ1,

(A18)

with a similar expression for ψ ′
1. From equations (A17), (A18),

and their counterparts for ψ ′
01 and ψ ′

1, the O(1) and O(δS)
solutions may be written in terms of φ′

00, ψ ′
00, G′

φij
, and G′

ψij

in addition to B and U .
Equation (A15) and its counterpart for ψ ′

00 are not explicitly
dependent of the mean field, which is a primary generator of
the statistical anisotropy of φ′ and ψ ′. We thus assume their
isotropic correlation functions

〈Yi(k;τ ) Zj (k′;τ ′)〉
δ(k + k′)

= Dij (k)QYZ(k;τ,τ ′)

+
i

2
kl

k2 εij lHYZ(k;τ,τ ′), (A19)

〈G′
Yij

(k;τ,τ ′)〉 = δijGYij
(k;τ,τ ′). (A20)

Here, Y and Z represent one of φ′
00 and ψ ′

00. For instance, we
write

〈φ′
00i

(k;τ )ψ ′
00j

(k′;τ ′)〉
δ(k + k′)

= Dij (k)Qφψ (k;τ,τ ′)

+
i

2
kl

k2 εij lHφψ (k;τ,τ ′). (A21)

In using Elsasser’s variables, Elsasser’s turbulent stress,
defined by equation (A9) is expanded as

R(E)
ij = 〈φ′

0iψ
′
0j 〉 + δS

(
〈φ′

1iψ
′
0j 〉 + 〈φ′

0iψ
′
1j 〉

)
+ O(δ2

S)

= 〈φ′
00iψ

′
00j 〉 + 〈φ′

01iψ
′
00j 〉 + 〈φ′

00iψ
′
01j 〉 + · · ·

+ δS

(
〈φ′

1iψ
′
00j 〉 + 〈φ′

00iψ
′
1j 〉 + · · ·

)
+ O(δ2

S). (A22)

Equations (A14) and (A12) are substituted into equation (A22).
With the help of equations (A19) and (A20), one has, after
lengthy manipulations,

R(E)
ij =

2
3
K (E)δij

+
[

1
6

∫
dk

∫ τ

−∞
Gψ (k;τ,τ1)Hφψ (k;τ,τ1) dτ1

]
εij lBl

+
[

1
6

∫
dk

∫ τ

−∞
Gφ(k;τ,τ1)Hψφ(k;τ,τ1) dτ1

]
εij lBl

−
(

2
3
∂Ψj

∂xi
+

1
15
∂Ψi

∂xj

)

×
∫

dk
∫ τ

−∞
Gψ (k;τ,τ1)Qφφ(k;τ,τ1) dτ1

−
(

2
3
∂Φj

∂xi
+

1
15
∂Φi

∂xj

)

×
∫

dk
∫ τ

−∞
Gφ(k;τ,τ1)Qψψ (k;τ,τ1) dτ1, (A23)
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with

K (E) =
1
2
〈φ′ ·ψ ′〉

=
∫

Qφψ (k;τ,τ1) dk

− 1
2

∫
dk

∫ τ

−∞
Gψ (k;τ,τ1)

DQφψ (k;τ,τ1)
Dt

dτ1

− 1
2

∫
dk

∫ τ

−∞
Gφ(k;τ,τ1)

DQψφ(k;τ,τ1)
Dt

dτ1

− 1
4

[∫
k−2dk

∫ τ

−∞
Gψ (k;τ,τ1)

∂Hφψ (k;τ,τ1)
∂xl

dτ1

]
Bl

− 1
4

[∫
k−2dk

∫ τ

−∞
Gφ(k;τ,τ1)

∂Hψφ(k;τ,τ1)
∂xl

dτ1

]
Bl.

(A24)

We substitute equation (A23) into equations (A10) and (A11),
and obtain

EM = αB−βJ + γΩ, (A25)

where

α =
1
3

∫
dk

∫ τ

−∞
G+ (k,x;τ,τ1, t)

× [−Huu(k,x;τ,τ1, t) + Hbb(k,x;τ,τ1, t)] dτ1

− 1
3

∫
dk

∫ τ

−∞
G−(k,x;τ,τ1, t)

× [−Hbu(k,x;τ,τ1, t) + Hub(k,x;τ,τ1, t)] dτ1,

(A26)

β =
1
3

∫
dk

∫ τ

−∞
G+ (k,x;τ,τ1, t)

× [Quu(k,x;τ,τ1, t) + Qbb(k,x;τ,τ1, t)] dτ1

− 1
3

∫
dk

∫ τ

−∞
G−(k,x;τ,τ1, t)

× [Qub(k,x;τ,τ1, t) + Qbu(k,x;τ,τ1, t)] dτ1,

(A27)

γ =
1
3

∫
dk

∫ τ

−∞
G+ (k,x;τ,τ1, t)

× [Qub(k,x;τ,τ1, t) + Qbu(k,x;τ,τ1, t)] dτ1

− 1
3

∫
dk

∫ τ

−∞
G−(k,x;τ,τ1, t)

× [Quu(k,x;τ,τ1, t) + Qbb(k,x;τ,τ1, t)] dτ1,

(A28)

and G+ = (Gφ + Gψ )/2, G− = (Gφ −Gψ )/2, with the depen-
dence on slow variables explicitly shown through x and t in
this equation. The term (A28) shows the cross-helicity dynamo
mechanism.

A one-point modeling is deduced from equations (A26)–
(A28). Integrals of QYZ(k;τ,τ ′) and HYZ(k;τ,τ ′) over k give
the turbulent MHD energy, K = 〈(u′2 + b′2)/2〉, the turbulent
cross helicity, W = 〈u′ · b′〉, and the turbulent residual helicity
H = 〈−u′ · ω′ + b′ · j′〉. The integral of the Green’s function
provides

τM(k) =
∫ τ

−∞
G+ (k,x;τ,τ1, t) dτ1, (A29)

which expresses the time scale associated with the spatial
length, k−1. For a representative wave number, τM(k) provides
the autocorrelation time, τc. The magnetic perturbation con-
tributes to the magnetic diffusivity, as explicitly shown in a
nonlinear simulation (see, e.g., Müller, Carti 2002). Neverthe-
less, by introducing the property of the 3D MHD turbu-
lence, which relates the magnetic fluctuation intensity to the
velocity turbulence intensity, β can be expressed in terms of
the kinematic magnetic diffusivity, β = Cβ〈u′2〉τc (Diamond
et al. 2004; Vainshtein, Kitchatinov 1983; Montgomery, Chen
1984). Thus, the integrals in equations (A26)–(A28) are in pro-
portion to τc H , τc KK, and τc W , respectively (KK = 〈u′2/2〉).
Thus, by introducing numerical coefficients Cα , Cβ , and
Cγ , we write α = CατcH , β = CβτcKK, and γ = Cγ τcW .
Numerical coefficients Cα , Cβ , and Cγ have been determined
by comparing with direct numerical simulations.

Similarly, the Reynolds stress, Rij , is written as

Rij =
2
3
KRδij − νTSij + νMMij , (A30)

where KR is defined by KR = 〈u′2−b′2〉/2 =
∫

QK(k;τ,τ ′)dk−∫
QM(k; τ, τ ′) dk, and Mij = ∂Bj/∂xi + ∂Bi/∂xj . Detailed

discussion on νT and νM was also developed in (Yoshizawa
1990). The key is that the terms β and νT are induced by
the fluctuation energy intensity, while the terms γ and νM are
caused by the cross-helicity of the MHD turbulence, and that
the correlation time (integral of Green’s function) is taken to
be common for these four quantities. Thus, an evaluation has
been given,
νM

νT
) γ

β
. (A31)

[See: Yoshizawa et al. (2004). Note that other modeling may
provide a relation with a different magnitude of the ratio, e.g.,
νM/νT ) Cr γ /β. Nevertheless, the difference in the ratio
Cr does not cause a qualitative change in the conclusion of
this analysis.] The term νM Mij in Rij represents the drive
of rotation owing to the magnetic field in the presence of the
cross-helicity dynamo process.

Appendix 3. Solution Which is Regular at the Center

The main interest of this article is to understand the toroidal
structure in a shelluar domain, such as a convective zone.
Recently, a proposal for the magnetic field in the central core of
the Sun has been given (Gough, McIntyre 1998). The domain
where the magnetic field is generated is considered to include
the center. Then the toroidal structure, if it exists, is singular at
the center. In such a case, the toroidal solution is given as
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Bζ (r,θ ) = a1j1(y)P (1)
1 (cosθ ) + · · · (A32)

Bθ (r,θ ) = −a1

[
2j1(y)

y
− j2(y)

]
P (1)

1 (cosθ ) + · · · (A33)

Br (r,θ ) = a1
j1(y)

y

[
2cosθ
sinθ

P (1)
1 (cosθ )−P (2)

1 (cosθ )
]

+ · · ·

(A34)

where + · · · indicates the higher harmonics. The eigenvalue
condition is given at a radius where the radial magnetic field
vanishes.

This solution has a dipole component, as in Gough and
McIntyre (1998), but has a topology of a torus. Because it is
force free, the global magnetic energy associated with the mean
magnetic field takes a (local) minimum. Therefore it is more
stable compared with the solution with a pure dipole magnetic
field.

References

Barnes, J. R., James, D. J., & Cameron, A. C. 2004, MNRAS, 352,
589

Blackman, E. G. 2000, ApJ, 529, 138
Blackman, E. G., & Chou, T. 1997 ApJ, 489, L95
Busse, F. H. 1994, Chaos, 4, 123
Covas, E., Tavakol, R., & Moss, D. 2001, A&A, 371, 718
Diamond, P. H., Hughes, D. W., & Kim, E.-J. 2004, in The Fluid

Mechanics of Astrophysics and Geophysics, ed. A. M. Soward,
C. A. Jones, D. W. Hughes, & N. O. Weiss (London: CRC Press),
12, 145

Donati, J.-F., et al. 2003, MNRAS, 345, 1145
Fan, Y., & Gong, D. 2000, Solar Phys., 192, 141
Gough, D. O., & McIntyre, M. E. 1998, Nature, 394, 755
Gruzinov, A. V., & Diamond, P. H. 1994, Phys. Rev. Lett., 72, 1651
Itoh, S.-I., Itoh, K., Yoshizawa, A., & Yokoi, N. 2005, ApJ, 618, 1044
Itoh, S.-I., Itoh, K., Zushi, H., & Fukuyama, A. 1998, Plasma Phys.

Control. Fusion, 40, 879
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